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Primary motivation: Multiscale modeling
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Background

• Heterogeneity (i.e. nonlocality) gradually increases at smaller
length scales: δA0 , δSn−1 · · · δSn .

• It is challenging to link amorphous or heterogeneous
microstructure with conventional continuum solvers (e.g.
Difficult to link FEA mesh and atoms from polymers...).

• We need a simple and robust multiscale modeling scheme which
can address heterogeneity while bridging multiple length scales.

• Peridynamics is a nonlocal continuum theory.
• In this context peridynamics can be used at meso or nanoscale

by incorporating heterogeneity through pre-existing damages
and randomly distributed particles..... JUST LIKE
Coarse-grained MD !!
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Peridynamics and Hierarchical Multiscale modeling

• Peridynamics (nonlocal continuum formulation) acts as
coarse-grained MD model at meso or nanoscale. i.e. Based on
Micromorpic theory→Micoscale PD system is a finitely many
particle system

R. Rahman, J. T. Foster, and A. Haque: A multiscale modeling scheme based on peridynamic theory. In:
International Journal of Computational Multiscale Engineering (2014).
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Peridynamics and Hierarchical Multiscale modeling

• Conventional coarse-graining schemes are typically limited to
similar cutoff distances for fine and coarse scale models...
similar resolution.

• In the PD based hierarchical model the cutoff distance (i.e. δ)
varies among wide range of length scales: e.g. between nm to
mm ....

• We do not need any multibody potential for each lengh scale
since PD nonlocal force density depends on material’s bulk
properties.

• PD can be used as DPD or MD at meso or nanoscales,
respectively: PDnano or meso ≡ PDmacro + Random noise..

R Rahman and JT Foster: Bridging the length scales through nonlocal hierarchical multiscale modeling scheme.
In: Computational Materials Science 92 (2014), pp. 401–415.
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Thermostat for a peridynamic system

• Shrinking down the length scale
from macro to nano level =⇒
phase-space approaches to be finite
(N particle system).

• Thermal noise ηMD ≡ ηPD at
atomistic level.

• Fluctuation-dissipation
mechanism can be incorporated in
PD formulation through stochastic
thermostating, i.e. Langevin
dynamics ... Introduce effect of
TEMPERATURE?

R Rahman and JT Foster: Peridynamic theory of solids from the perspective of classical statistical mechanics.
In: Physica A: Statistical Mechanics and its Applications 437 (2015), pp. 162–183.
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Thermostat for a peridynamic system

• Attach thermostat to each PD
particle instead of using global
velocity scaling.

• Simple options: i) NVE + Langevin
thermostat, ii) NPH or NPT +
Langevin thermostat.

• (In Fig) The stochastic thermostat
keeps the temperature stable
around Texpected = 1.0K.

• Bond breakage or randomly
distributed particles causes the PD
model to be unstable under global
thermostat.

Role of fluctuation-dissipation on 

termperature evolution
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Few notes: Upscaling of fluctuation-dissipation

• The fluctuation-dissipation is re-defined such that
σ∗ = 2γ∗ρkBT∗. σ∗, γ∗ and T∗ are the amplitude of the
random “kick”, frictional co-efficient and temperature like
term, respectively, responsible for the random kicks.

• In Fourier space: ργ∗ (ω) = 1
ρ〈u̇2〉

∫∞
0 e−iωt〈v (t) v (t + τ)〉dt

=⇒ mobility of the particles.
• At meso or nanoscales T∗ provides perturbation in the

system, just like “heat bath”.
• Hence introduce Dissipative Peridynamics
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Dissipative Peridynamics

T
(
Y, Ẏ,Θ

)
= Te (Y,Θ) + Td (Y, Ẏ,Θ

)
+ δTR (t) , (1)
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ρ
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′
− x
〉

PD
− Te

[
x

′
, t
] 〈

x − x
′
〉

PD

}
dVx′

−
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0
dt ′K (t ′ − t) p̃ (t) + f̃ R (t) . (3)

(4)

Note: Since u = u + η (η is Gaussian noise), u can not be pertaining to
classical elasticity model. i.e. We need nonlocal model to incorporate
Langevin dynamics.
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LAMMPS and Peridynamics: PDLAMMPS

• To use PDLAMMPS: make yes− peri then build LAMMPS.

• For multiscale modeling link LAMMPS library with your C++
code and invoke LAMMPS functionalities, e.g.
lmp→ input ()→ one (.....) or access other atomstic info.

• Use Python wrapper for LAMMPS and invoke LAMMPS
commands in your Python code.

• LAMMPS + PDLAMMPS can be called from you umbrella code
(C++, Python or Fortran....).
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LAMMPS and Peridynamics: PDLAMMPS

• Linear elastic solid (pair style : peri/lps), Elastic-plastic solid
(pair style : peri/eps) and Visco-elastic solid
(pair style : peri/ves)

• Compute : Plasticitywas added in PDLAMMPS.

• PDLAMMPS documentation:
http://lammps.sandia.gov/doc/pair_peri.html

• To construct/access the neighborhood vector:
FixPeriNeig : FixClass. Currently built once.

• Particle attributes: AtomVecPeri : AtomVecClass.

• For your new PD material model: PairPeri foo : Pair, add
constitutive model in the method: PairPeri foo :: compute () .

• LAMMPS functionality for Langevin dynamics was easily
integrated with the PDLAMMPS through LAMMPS input script.
EASY !!!!, e.g. pairstyle : peri/lps + fix nve +
fix Langevin.
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Summary

• Things can be added: i) Multi-Physics PD moldel, ii)
Diffusion model, iii) Introduce implicit schemes (e.g.
Trilinos, PTESc etc ...) for PDLAMMPS etc.

• Incorporate Fractional Langevin Dynamics in the
LAMMPS in order to use with the PD model.

Email: rezwanur.rahman@utexas.edu
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Questions?
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